
 

 

 

1  

   
An Econometric Analysis of the Impact of Contemporary Climate Smart 
Technologies on Global Carbon Dioxide Emissions 

  

 

  

 CORRESPONDENCE     Moffat Chiba  

Email: 
moffatchiba@gmail.com 

Phone  : 

00263713151831 

  University of Pretoria, (Department of Anthropology, Archaeology and 

development studies), Pretoria, Republic of South Africa  

ARTICLE INFORMATION   ABSTRACT  
  
DOI: 10.24036/jccs/Vol3-

iss1/45 

Page:  01-21  

  
_________________________ 
Received: Janary 25, 2025 
Revised: May 28, 2025 
Accepted: May 29, 2025 

  
  

  

  
  
  

This paper provides an econometric analysis of the impact of climate 

smart technologies on global carbon dioxide emissions. It considers 

carbon dioxide due to the observation that it is the most significant 

greenhouse gas whose emissions currently stand at 37 gigatons per 

annum. Making use of graphite, zinc, silver global production annual 

trends, global land use changes and the changing trends of global 

forest area cover of global data running from 1990 to 2023 to 

generate the formula, Log(co2) = β0 + β1Logforest + 

β2Log(graphite) + β3Log(landuse) + β4log(silver) + 

β5dlog(zinc) +ε, in EViews 7, the study found that a 1% increase in 

forest, graphite, landuse, silver and zinc technologies yields a 95% 

reduction in carbon dioxide emission. There is positive progress in 

attempts at reducing carbon dioxide emissions. The study therefore 

recommends nation-states to increase and gear-up their climate 

smart efforts to achieve net-zero GHGs emissions by 2050. 
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INTRODUCTION  

Climate smart technologies, which refer to the sustainable, processing and reutilization of natural 

resources to create a low carbon global economy (World Bank, 2024), are part and parcel of the low-

carbon technological climate change package, which has entered the arena for climate policy discussions 

since the 1980s (Planete Energies, 2024). Past efforts at tackling climate change have been around 

since 1980 firstly with the launching of the First International Climate Programme, the 1988 creation of 

the Intergovernmental Panel on Climate Change (IPCC), the 1992 Rio Earth Summit, the 1997 Kyoto 

Protocol, the 2005 European Union Emissions Trading system up to the 2019 European Green Deal. All 

these global efforts were meant to harness human actions that would address one of the greatest 

enemies of our times and probably one of the extreme encounters that the whole human race is facing 
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at the moment. The need to address the problem of climate change is a top priority to make the planet 

earth hospitable both to human beings and the whole global ecosystem. 

 In view of these efforts, the need to produce climate smart solutions (Ekins-Daukes, 2009; 

Huisiningh et al., 2015) has recently flooded the discussions on how to get rid of the greenhouse gas 

emissions to our common atmosphere. Adopting and embracing advanced battery technology to power 

modern engines including the locomotives, investing in renewable sources of energy and taking social 

responsibility in land use and land use change have been touted as particularly necessary in reducing 

greenhouse gas (GHG) emissions (Nunes, 2023; Parry, 2019). The use of membrane technologies that 

encompass the use of discerning membranes to capture gases such as carbon dioxide from gas streams 

generated in the power plants of fossil fuels, is aimed at separating carbon dioxide from other gases. 

This allows more than 90% of the carbon being emitted into the atmosphere to be captured (Nunes, 

2023). In the area of land use and land use change, reduction in the use of artificial fertilisers have also 

been recognised as excellent mechanisms in reducing greenhouse gases including nitrous oxide 

(Nabuurs et al., 2015; Nunes, 2023).  

 Notwithstanding, human beings are a unique creation possessing the ability to fundamentally 

change the ecological environment for the better through the prudent utilisation of resources supplied 

by the earth system (Nunes, 2023). The convening of the 2015 Paris Agreement was aimed at reducing 

global temperatures by 2˚C (Lin, 2019; World Bank, 2020) through various Carbon Dioxide Removal 

(CDR) technologies that include, but not limited to Bioenergy with Carbon Capture and Storage (BECCS), 

Direct Air Capture (DAC), Biochar, enhanced weathering and ocean fertilisation. These technologies 

have generated a lot of global policies and projects that were aimed at reducing the concentration of 

greenhouse gases into the atmosphere. Classic examples of these policies include the carbon tax global 

policy as well as other numerous projects that include the AISI Carbon dioxide Breakthrough programme 

in North America, the Australian Carbon Dioxide Breakthrough programme, The Japanese COURSE50 

programme, the European ULCOs programme (Hollapa, 2020) including the afforestation and 

reforestation programmes in both the Economically Advanced Regions of the World and the Emerging 

Economies. 

 While a considerable array of academic work and policy discussions have been carried out with 

particular reference to the above policies and programmes, the need to quantitatively evaluate the 

progress of these actions in reducing carbon dioxide emissions on a global scale to date has received 

little attention. Following these observations, critical minerals such as zinc, silver, graphite, cobalt, 

copper, lithium and other prudent climate smart farming technologies have become increasingly 

important in restoring the ecosystem’s well-being to its original form (New Scientist, 2024; Saleem et 

al., 2024; World Bank, 2024). The need to trace progress by individual countries collectively in climate 

change mitigation is absolutely necessary considering that we are only two and a half decades away 

from the net-zero emissions 2050 global deadline. 

 

Global efforts at addressing climate change 

The need to address the climate change conundrum of our time did not start with the 2015 Paris 

Agreement discussions. Other global actions predate these attempts. In 1980, the First International 
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Climate Change Programme was established (Plane̍te Energies, 2024). This was the effort by the World 

Meteorological Organisation in Switzerland’s capital, Geneva alongside the International Council of 

Scientific Unions (Plane̍te Energies, 2024). This action critically boosted climate science, especially with 

reference to the mathematical simulation of oceanic and atmospheric phenomena (Plane̍te Energies, 

2024). 

In 1988 in November, the Intergovernmental Panel on Climate Change (IPCC) was created 

(Plane̍te Energies, 2024). IPCC was established because world leaders and academics wanted to 

understand the causes, challenges and consequences of climate change. In June of 1992, the Rio Earth 

Summit was also convened in Brazil marking the second Earth Summit, which led to the establishment 

and ratification of the United Nations Framework Convention on Climate Change, initially endorsed by 

166 countries. The summit acknowledged that human beings are responsible for global warming. 

Similarly, the summit led to the establishment of the Conference of Parties (COP), which now brings 

together all the nations globally to discuss on the way forward on climate change. In 1997, a global 

consensus on international emissions came in and effected the Kyoto Protocol of December 1997 

(Plane̍te Energies, 2024). The major objective was to drastically reduce the emissions of greenhouse 

gases by approximately 5.2% versus 1990 levels between 2008 and 2012 (Lutsey and Sperling, 2008; 

Plane̍te Energies, 2024).  

In 2005, a European Union emissions Trading system was launched. Under this initiative, firms 

that were highly responsible for the emission of greenhouse gases were awarded a certain number of 

emission allowances and they were expected to buy these allowances from other companies if they 

exceed their limits (Plane ̍te Energies, 2024). 

In 2009, global nations met in Copenhagen for a conference to discuss the maximum possible 

or acceptable increase in global temperatures. Additionally, the nations also met in 2010 for the Cancun 

Climate Change Conference and Green Climate Fund. At this conference, the parties agreed to establish 

the Green Climate Fund (Plane̍te Energies, 2024).   

In 2015, the countries of the globe also met in Paris under the auspices of the COP21 summit 

(Plane̍te Energies, 2024). At this conference, the major goal was to limit global warming to less than 

2˚c. In 2019 in December, the European Green Deal was also signed. The conference encouraged 

European Union member states to adopt a net-zero emission of greenhouse gases. The above global 

conferences and initiatives have generated some positive results in the reduction of greenhouse gas 

emissions though the world still has a long way to go; for example, the European Union reached a 

significantly low level of GHG emissions this year in 2024 while the United Kingdom has already closed 

its last remaining coal power station in September 2024 (Crownhart, 2024), signifying a global positive 

attitude to the green climate smart new deal.  

 

Technologies for reducing atmospheric carbon dioxide  

Global governments and research institutions have proposed several Carbon Dioxide Removal (CDR) 

technologies. The idea behind is to create a clean atmosphere in which the balance of gases goes back 

to their original form. This section details briefly the various technologies that have been advanced to 

deal with greenhouse gases, but with particular reference to carbon dioxide. The discussion is centred 
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on carbon dioxide removal technologies revolving around Direct Air Capture (DACs), Bioenergy with 

carbon capture and storage (BECCS) and other technologies that include but not limited to afforestation, 

reforestation, biochar, ocean fertilisation and enhancing the weathering process. 

 One of the Carbon Dioxide Removal technologies that have been proposed by Atmospheric 

experts is the Direct Air Capture technology (DACs). This technology makes use of chemical processes 

to remove carbon dioxide from the air (Lin, 2019). The type of material that is used to extract the 

carbon dioxide or substrate must then be regenerated (Lin, 2019). The carbon dioxide that is released 

in the process of regeneration is then stored in the ocean or in the soil (Lin, 2019). However, this 

technology is very expensive since it requires more than US$250 to remove a tonne of carbon dioxide 

(Lin, 2019, p.9). Climeworks, a company that is found in Zurich, has recently developed a new Direct 

Air Capture Technology, which is capable of removing millions of tonnes of carbon dioxide from the 

atmosphere by the end of this decade (Mendelsohn, 2024). With this technology, Climeworks argues 

that the facility is able to remove about 36 000 tonnes of carbon dioxide from the atmosphere 

(Mendelsohn, 2024).  

 Another form of Carbon Dioxide Removal technology that has been advanced in climate policy 

discussions is the Bioenergy with carbon capture and storage (BECCS). This form of technology involves 

the cultivation of biological energy crops which are deemed to remove carbon dioxide from the air during 

the process of photosynthesis (Lin, 2019). The second stage for this process involves the burning of the 

subsequent biomass at power stations which will yield energy and carbon dioxide, which is then 

captured, crushed and kept in geological reservoirs in liquid form or possibly in the deep sea (Lin, 2019). 

However, this Renewable Energy Technology (RET) has been faced with quite a number of challenges 

that include land shortages (Fawzy et al., 2029; Lin, 2019).  

 Other Carbon dioxide removal technologies that have been proposed include afforestation and 

reforestation in which the planted trees would act as carbon sinks. However, some scholars have argued 

that this technology provides a temporary measure of carbon dioxide storage since the process is 

deemed to increase global warming through reducing the effect of albedo, particularly in regions that 

are susceptible to seasonal snow cover (Lin, 2019). Other technologies such as biochar, which 

encompasses the combustion of biomass in the absence of oxygen to give charcoal and then ploughed 

into the earth, improves the soil’s nutrient content and simultaneously stores carbon (Lin, 2019).  

 Other carbon dioxide removal technologies that have been advanced as solutions to the problem 

of atmospheric carbon dioxide concentration relates to the enhancement of the process of weathering. 

This process includes the addition of ground-up silicate rocks to the ocean or the soils to induce chemical 

reactions that would eventually absorb carbon dioxide from the atmosphere (Lin, 2019). Whilst this 

process can remove about 4 gigatons of carbon dioxide per annum from the atmosphere, the harnessing 

of this technology has thus far been challenged as inefficient as it has been restricted to laboratory level 

experiments (Lin, 2019; Suman, 2021).  

 Ocean fertilisation has similarly been proposed as one of the Carbon dioxide removal 

technologies. This method involves the addition of iron (Fe) or other nutrient forms to the seas or oceans 

to arouse biological activities (Lin, 2019). Theoretically, enhanced microorganism populations would 

extract carbon from the atmosphere and subsequently transport the carbon to the ocean depths when 



Journal of Climate Change Society (JCCS)           Vol 03, No 01, Page 01-21   

 
  

Moffat Chiba    5  

they die (Lin, 2019). However, this technology has the disadvantage of giving a complete alteration of 

the oceans’ chemistry and their respective ecosystems thereby disrupting food chains, food webs, 

availability of oxygen as well as harming algae blooms (Lin, 2019; Song, 2006).   

 

Climate Smart technologies  

Critical minerals such as silver, graphite, cobalt, lithium, copper, zinc and other smart forms of land use 

and agriculture have been proposed as top-notch methods in restoring balance to the global ecosystem 

(Ekins-Daukes, 2009). These proposals have soared significantly as efforts at protecting the 

Anthropocene have gathered global momentum (World Bank, 2024). The climate smart technologies 

are being used in generating a climate smart environment world-wide and have undergone serious 

global experiments with the overall aim of creating a low carbon global economy (Calderon et al., 2023; 

Zanoletti et al., 2024). 

 With the need to address the problem of climate change, metal technologies, land use changes 

and technologies have since been harnessed as important strategies to restore the balance of the global 

ecosystem (World Bank, 2019). These technologies, especially the metal technologies, have been 

exploited in the powering of Electric Vehicles; ensuring their competent release and storage of energy 

(World Bank, 2019). Similarly, cobalt has been used in battery cathodes considering that scientifically, 

it has been proven to enhance the density of energy including the longevity of battery lives (World Bank, 

2019). Copper has also been used extensively in electrical grids through transmitting, connecting and 

distributing energy (World Bank, 2019).  Copper has been used in solar panels due to its ability in 

connecting photovoltaic cells (World Bank, 2018; 2019).  

   

Global Projects at atmospheric Carbon dioxide reduction and their impacts 

Quite a number of projects and programmes have been adopted and harnessed globally to create a 

carbon dioxide free atmosphere. The purpose of this section is to provide a review of these projects and 

programmes including their impact on reducing atmospheric carbon dioxide.  

 Carbon Capture and Storage technologies have been proposed and practiced in some countries 

as part of Carbon Dioxide Removal technologies (Lin, 2019; Hollapa, 2020). Oil producing companies in 

the United States of America and in other oil producing countries have used Carbon Dioxide Capture 

and Storage technologies to get rid of atmospheric carbon dioxide concentration by using cryogenic 

distillation/membrane, physical absorption and chemical absorption-based separation technologies. 

LanzaTech, an Illinois United States-based company has also developed microbial bioreactor systems 

with the ability of direct gas fermentation to generate ethanol from carbon-holding gases like integrated 

iron and steel plant off gases (Hollapa, 2020). Another demonstration plant has also been set up in 

Shouqang in China while another one was similarly constructed in Belgium at Arcelor Mittal Ghent 

(Hollapa, 2020). These CCS technologies were said to have been able to reduce atmospheric carbon 

dioxide concentration by 9% (Hollapa, 2020, p.9).  

Globally, national governments have advanced their technologies to minimise the emission of 

greenhouse gases into the atmosphere. Notable examples are the Japanese COURSE50 programme, 

the European ULCOs programme, the Australian Carbon dioxide Breakthrough programme and the 
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North American AISI Carbon dioxide Breakthrough programme. Similarly aligned programmes have 

been implemented in Taiwan, India and China (Hollapa, 2020). These global technologies consisting of 

heat recovery, optimised internal recycling as well as the replacement of air using oxygen have especially 

been found to be impactful in reducing greenhouse gas emissions (Hollapa, 2020). With these 

technologies, “the reductions in carbon dioxide emissions were estimated to be in the range of 10% to 

25%” (Hollapa, 2020, p. 7). 

Low carbon dioxide emissions have similarly been reduced through the harnessing of renewable 

technologies such as wind, solar, nuclear and hydro-power. With an increase in the use of climate smart 

technologies, global economic giants like China, which is the greatest producer of global steel, have 

been able to reduce carbon dioxide emissions to 620g co2/kwh (Hollapa, 2020). Similarly, the United 

States of America was able to reduce carbon dioxide emissions by 420gco2/kwh, while the European 

Union was able to reduce its carbon emissions by 282gco2/kwh (Hollapa, 2020). With these 

technologies, global emissions of carbon dioxide are at 10% for the past three decades (Hollapa, 2020, 

p. 11). 

In Nepal, Renewable Energy Technologies (RETs) have also been implemented. Technologies 

such as the National Energy Crisis Mitigation and Energy Development Decade have been in operation 

since 2016, whilst the Nationally Determined Contributions have been effected in the past 5 years 

(Suman, 2021). With these climate smart technologies, a total of 86 803 tco2e were reduced (Suman, 

2021, p. 10). Additionally, global countries have attempted to reduce the emission of greenhouse gases 

into the atmosphere through the reduction of their energy requirements (Hollapa, 2020). Along these 

recommendations, China has similarly reduced its energy consumption patterns by approximately 15% 

in the years between 2006 and 2017. These efforts have indirectly reduced the emission of carbon 

dioxide since demand was curtailed; hence its respective production (Hollapa, 2020).  

Even in African countries, projects and programmes that have been implemented to drastically 

reduce the carbon dioxide emissions have been noticed. The implementation of the 300MW Bui Hydro 

project in western Ghana above the Volta Dam has significantly contributed to the reduction of 

greenhouse gas emissions (Ahinsah-Wobil, 2024). In view of these past evaluated programmes and 

projects, the need to provide an econometric analysis of the Impact of contemporary climate smart 

metal technologies on global carbon dioxide emissions through hypothesis testing has never adequately 

featured in global literature. In that regard, the purpose of this paper is to provide a quantitative analysis 

of the impact of climate smart metal technologies on carbon dioxide emissions. 

 

METHODS  

This study was a global study and was grounded on quantitative world data collected from 1990 to 

2023. The major variables of particular concern were carbon dioxide and climate smart technologies 

(forest, graphite, land use, silver and zinc). Some variables like lithium, rare earth, fertiliser consumption 

including others like magnesium and aluminium were dropped as they depicted higher levels of 

multicollinearity. All these data were accessed from the World Bank databases 

(http://ourworldindata.org/metals-minerals; https://data.worldbank,org/indicator/AG.LND.FRSTZS? 

https://ourworldindata.org/co2-emissions from fossil fuels and land use change, world) . In table 1 

http://ourworldindata.org/metals-minerals;%20https:/data.worldbank,org/indicator/AG.LND.FRSTZS?%20https://ourworldindata.org/co2-emissions%20from%20fossil%20fuels%20and%20land%20use%20change,%20world)%20
http://ourworldindata.org/metals-minerals;%20https:/data.worldbank,org/indicator/AG.LND.FRSTZS?%20https://ourworldindata.org/co2-emissions%20from%20fossil%20fuels%20and%20land%20use%20change,%20world)%20
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below, I provide a summary of the definitions of the variables in question including how they were 

measured and utilized.  

Table 1. Definitions of variables and their measurements 

Variable description of variable  measurement 

Co2  Carbon dioxide   Global emissions in billion tonnes/year 

Graphite graphite                          global production in thousand tonnes per/year   

Landuse land use                          global changes on uses of land in percentage/year 

Forest  forest area                    global percentage of area covered by forests/year 

Solver  Silver                             global production in thousand tonnes/year 

Zinc  Zinc                                global production in thousand tonnes per/year  

 

Before the computation of the regression model on the impact of climate smart technologies on 

carbon dioxide emissions, several pretests were carried out to ensure that the results of the analysis 

were far from spuriosity. Firstly, I downloaded the required data from the above-mentioned websites. 

Initially, many variables were included for the study (See appendix). However, some of them were 

dropped after finding out that they depicted high levels of multicollinearity and autocorrelation and so 

could not qualify for this analysis. Others like lithium were dropped considering that data on lithium 

production only appears from the year 2000 onwards and so could do not qualify the specified criteria. 

I also decided to start the statistical analysis from 1990 owing to the observation that other variables of 

interest especially the dynamics and statistics of the area covered by the world forests were not available 

prior to 1990. With these data specification criterions, global area covered by the world forests (forest), 

land use, silver, graphite and zinc were found to meet my data selection criterion. The encouragement 

of nation-states to bring deforestation to an end to protect the world’s diversity (Ritchie, Spooner and 

Roser 2021) and create carbon sinks (Chiba, 2024) have also been among the climate smart 

technologies to reduce carbon dioxide emissions. Similarly, governments have also been encouraged to 

reduce their land use to leave more land for wildlife (Ritchie and Roser, 2013); thus, being part and 

parcel of climate smart technologies. Critical minerals such as silver, graphite and zinc have widely been 

used to create climate smart energy requirements (Jennifer, 2024; Salas and Dunn, 2024; World 

Economic Forum, 2022). 

I provided the descriptive statistics for the data. In doing this, the idea was to familiarise myself 

with an understanding of the data; which is a prerequisite in statistical analysis. The unit root tests were 

conducted with the sole aim of avoiding spurious regression as well as ensuring the stationarity of the 

data that was in use. To do this, EViews implements quite a number of tests for panel data 
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stationarity/unit root, which include Ng-Perron, Kwiatkowski-Phillips-Schmidt-Shin, Augmented Dickey 

Fuller, Dickey-Fuller and Phillips-Perron and they have the Null Hypothesis that all panel data carry with 

them a unit root. However, in this analysis, I utilised the Augmented Dickey-Fuller test to ensure data 

stationarity. One major condition of statistical analysis is that the data used for regression analysis 

should display a higher level of stationarity (Newey and Powell, 1987; Silverman, 1986). This guards 

against the dangers of getting misleading results.  

 I similarly engaged the VAR Order Selection Criterion test to determine the optimal lag length 

of the model to enhance the interpretation of the model (Koenker and Hallock, 2001; Welsh, 1988). In 

doing this, I used the unrestricted VAR at the lag length of 2. Additionally, I also conducted Granger-

causality tests. The Granger Causality concept is not new in econometrics. It has been used elsewhere. 

Quite a number of studies have utilized panel Granger causality in their attempt to examine causality 

between the variables of interest; for example, Hartwig (2010) and Podrecca and Carmeci (2001). 

Drawing from the Granger causality definition, a time series cross-sectional variable that is stationary 

(Climate smart technologies) is considered to affect stationary variable (Carbon dioxide) given that the 

lagged variable demonstrates any statistically significant information about a variable; which is Carbon 

dioxide in the current of lagged Climate Smart technologies. The Null Hypothesis for this paper is stated 

below: 

𝐻0 : 𝛽1    , 1= 𝛽2,     2= ...... = 𝛽2 , k = 0 

I test whether Climate smart technologies have a forecasting power for carbon dioxide emissions as 

stated below for the null hypothesis: 

𝐻0 : 𝛼1   , 1₌𝛼2    2⹀ … … ⹀𝛼2    , 𝑘⹀0 

 

In this paper, the technique of Vector Autoregression (VAR) provides tests for the lagged 

coefficients of Climate smart technologies and checks their forecasting level on carbon dioxide emissions 

or vice versa. Before conducting the causality tests, a proper lag length choice was provided to prevent 

spurious regression results. In both cases, the Schwartz Information Criteria and the Akaike Information 

Criterion must demonstrate an ideal lag length. In view of the above, a Var approach in Least Squares 

method in EViews 7 was utilized in which an application of the Pair-Wise Granger-causality test was 

utilised.  

 It was similarly necessary to carry out residual tests for this analysis since the tests entirely 

seek to test for the stability of the data residuals. These tests included multicollinearity, 

heteroscedasticity, normality tests and autocorrelation. Multicollinearity, a statistical phenomenon in 

which two or more variables in a regression model demonstrate higher levels of correlation 

(Kocherginsky et al., 2005; Roger and Hallock, 2001), was another test that was carried out. I utilised 

the Variance Inflation Factor for these tests, possibly owing to their widespread utility in statistics.  

 Heteroscedasticity tests, which refers to a statistical condition in which errors or residuals in a 

regression model are not constant across all the levels of the independent variables, were similarly 

carried out. I used the Breusch-Pagan-Godfrey heteroscedasticity test owing to its widespread utility in 
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regression analysis (Xuming and Hu, 2002). One condition that is also required in statistical analysis is 

to understand if the data being worked upon follows a normal distribution specification. Similarly, I 

applied the Histogram-Normality test where the Jarque-Bera statistic and the probability value were 

used to interpret the level of normality. Checking for normality is important because it helps us to verify 

linear regression assumptions as well as checking for outliers (He and Hu, 2002; Jack and DiNardo, 

1997). Autocorrelation, a condition in which the current value of a variable is correlated to its past value, 

was also carried out.  The idea was to prevent spurious regression (Whitney and Powel, 1987). The 

statistic was thus conducted using the Breusch-Godfrey Serial Correlation LM Test.  

 I also applied the Ramsey RESET test to check for the misspecification of the model. It checks 

if inappropriate purposeful forms or omitted variables carry significant influences on the results of the 

regression output.  

 After performing the above tests, I then computed the equation using the formula log(co2) c 

log(forest) log(graphite) log(landuse) log(silver) dlog(zinc) using the LS-Least Squares (NLS and ARMA) 

method. The use of the Least Squares approach motivated me because of a variety of reasons that 

include its ability to deal with probable endogenous dealings between carbon dioxide emissions and 

climate smart technologies. With this approach, I was able to find the lagged effects of climate smart 

technologies on carbon dioxide emissions and establish whether the carbon dioxide-climate smart 

technological change feedback was present. Resultantly, the model I utilized is stated below:  

Log(co2) = β0 + β1Logforest + β2Log(graphite) + β3Log(landuse) + β4log(silver) + β5dlog(zinc) 

+ε; where Log(co2) was the logarithm of carbon dioxide; β0 is a constant and β1; β2; β3; β4 and β5 are 

the parameters to be estimated. Log(forest); Log(graphite); Log(landuse); log(silver) and dlog(zinc) 

are the logarithms for the values of forest technologies, graphite technologies, landuse technologies, 

silver technologies and zinc technologies respectively. 

RESULTS AND DISCUSSION    

Results   

Table 2 below provides a summary of the descriptive parameters of the variables in this paper. The 

mean of the variables is given. For most of the variables, the median is close to the mean and this shows 

a relatively symmetric distribution. The table also consists of the minimum and maximum values which 

demonstrate variable range; for example, graphite ranges from 517000 to 1680000. Standard deviation 

measures data dispersion. For example, co2 has a standard deviation of 5.52. This shows significant 

variation among its values. Skewness is a measure of the distribution asymmetry. A negative figure 

demonstrates a longer left tail, while a positive figure shows a longer right tail. This means that -

0.102455 for carbon dioxide demonstrates a longer left tail, while the land use value of 2.525337 shows 

a longer right tail. Kurtosis is a statistical measure of the distribution tailedness. Figures that are greater 

than 3 demonstrate heavier tails; for example, zinc, which has a figure of 3. 446345.The Jarque Bera 

test is a test for normality in which a higher value demonstrates a deviation from normality. In this case, 

the probability value of landuse shows a significant deviation from normality, whereas others like forest 

do not vary significantly from normality.  This analysis of the descriptive parameters is particularly 
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significant as it provides a foundational comprehension of the characteristics of the data; thus, providing 

a guide for further statistical exploration. 

 

Table 2. Summary of descriptive parameters (2000-2024) 

 

 CO2 FOREST GRAPHITE LANDUSE SILVER ZINC 

 Mean  3.01E+10  0.317235  965352.9  0.372059  21176.47  10139412 

 Median  3.11E+10  0.320000  939000.0  0.370000  21000.00  10150000 

 Maximum  3.78E+10  0.330000  1680000.  0.390000  29000.00  13800000 

 Minimum  2.24E+10  0.310000  517000.0  0.370000  14000.00  1200000. 

 Std. Dev.  5.52E+09  0.005630  298058.4  0.005382  4562.499  2933094. 

 Skewness -0.102455  0.066369  0.710207  2.525337  0.055101 -0.713648 

 Kurtosis  1.412501  2.619493  2.960304  8.174211  1.764349  3.446345 

       

 Jarque-Bera  3.629700  0.230074  2.860465  74.06582  2.180219  3.168232 

 Probability  0.162862  0.891333  0.239253  0.000000  0.336180  0.205129 

       

 Sum  1.02E+12  10.78600  32822000  12.65000  720000.0  3.45E+08 

 Sum Sq. Dev.  1.01E+21  0.001046  2.93E+12  0.000956  6.87E+08  2.84E+14 

       

 Observations  34  34  34  34  34  34 

 

One essential condition for analysing time series data is the determination of the data 

stationarity. Time series data that do have variables with a unit root generate biased results (Wu, 2016). 

In this analysis, I used the Augmented Dickey-Fuller test for time series unit root considering its 

robustness and acceptance among statisticians. The Augmented Dickey-Fuller bias adjusted t-statistic 

was found to be significant at all typical variable levels (carbon dioxide, forest, graphite, landuse, silver 

and zinc). The Null Hypothesis of a unit root is therefore rejected in favour of the Alternative hypothesis 

that the series is stationary. 

 

Table 3. Time series unit root tests 

Variable                             unadjusted t-statistics                       Adjusted t-statistics                            p-

values 

Carbon dioxide              -5.061186                                           -5.956500                                              0.0000 

forest                 -5.904264                                           -11.54110                                              0.0000 

graphite                 -2.991878                                           -6.152998                                              0.0000           

landuse                -3.102548                                           -7.358365                                              0.0000 

silver                    -4.992385                                           -6.867339                                              0.0000 

zinc                       1.320811                                             -5.444771                                              0.0001 

Augmented Dickey-Fuller test for time series unit root 
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H0: There is a unit root in the series 

F-Statistic ₌93.94253 

Prob˃F₌ 0.000000 

 

The model selection criteria were proposed by Andrews and Lu (2001) and in this study, the 

model selection criteria were used to determine the overall coefficients. The results demonstrate that 

the smallest figures of Akaike Information Criterion (AIC), The Schwarz Information Criterion (SC) and 

the Hannan-Quinn Information criterion (HQ) are found in order 1, hence, the first order VAR model is 

preferred. 

Table 4. VAR Lag Order Selection Criteria 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -1690.820 NA   4.60e+38  106.0512  106.3261  106.1423 

1 -1576.966   177.8974*   3.70e+36*   101.1853*   103.1091*   101.8230* 

2 -1547.257  35.27885  7.08e+36  101.5786  105.1513  102.7628 

       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   

 FPE: Final prediction error     

 AIC: Akaike information criterion     

 SC: Schwarz information criterion     

 HQ: Hannan-Quinn information criterion    

       

Granger-causality Results 

One of the tests that was particularly important was the Granger-causality test. The idea was to establish 

the direction of causality; being bi-directional or mono-directional. The results are presented on table 5 

below: 

 

Table 5a. Pairwise Granger Causality Tests 

    
 Null Hypothesis: Obs F-Statistic Prob.  

    
     FOREST does not Granger Cause CO2  32  0.30758 0.7378 

 CO2 does not Granger Cause FOREST  3.79979 0.0352 

    
     GRAPHITE does not Granger Cause CO2  32  0.18442 0.8326 

 CO2 does not Granger Cause GRAPHITE  4.42445 0.0218 

    
     LANDUSE does not Granger Cause CO2  32  0.84281 0.4415 

 CO2 does not Granger Cause LANDUSE  2.11355 0.1404 

    
     SILVER does not Granger Cause CO2  32  0.11614 0.8908 

 CO2 does not Granger Cause SILVER  2.84805 0.0755 
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 ZINC does not Granger Cause CO2  32  1.08086 0.3535 

 CO2 does not Granger Cause ZINC  5.93284 0.0073 
 

 

Table 5b. Pairwise Granger Causality Tests (cont’d) 

 GRAPHITE does not Granger Cause FOREST  32  2.39694 0.1101 

 FOREST does not Granger Cause GRAPHITE  3.42095 0.0474 

    
     LANDUSE does not Granger Cause FOREST  32  2.65148 0.0888 

 FOREST does not Granger Cause LANDUSE  0.27478 0.7618 

    
     SILVER does not Granger Cause FOREST  32  4.61010 0.0189 

 FOREST does not Granger Cause SILVER  0.08459 0.9191 

    
     ZINC does not Granger Cause FOREST  32  3.29640 0.0524 

 FOREST does not Granger Cause ZINC  0.89447 0.4206 

    
     LANDUSE does not Granger Cause GRAPHITE  32  0.30813 0.7374 

 GRAPHITE does not Granger Cause LANDUSE  1.50861 0.2393 

 

 

Table 5c. Pairwise Granger Causality Tests (continued) 

    
 Null Hypothesis: Obs F-Statistic Prob.  

    
 SILVER does not Granger Cause GRAPHITE  32  3.83843 0.0341 

 GRAPHITE does not Granger Cause SILVER  0.51644 0.6024 

    
     ZINC does not Granger Cause GRAPHITE  32  4.29100 0.0241 

 GRAPHITE does not Granger Cause ZINC  7.71248 0.0022 

    
     SILVER does not Granger Cause LANDUSE  32  0.79525 0.4618 

 LANDUSE does not Granger Cause SILVER  1.89149 0.1703 

    
     ZINC does not Granger Cause LANDUSE  32  1.53574 0.2335 

 LANDUSE does not Granger Cause ZINC  0.03285 0.9677 

    
     ZINC does not Granger Cause SILVER  32  3.83904 0.0341 

 SILVER does not Granger Cause ZINC  0.47898 0.6246 

    
    H0: Excluded variable does not granger cause Equation variable 

Ha: Excluded variable Granger causes Equation variable 

 

Tables 5a-c above demonstrate that carbon dioxide Granger causes forest, but not the other way round. 

Carbon dioxide similarly Granger causes graphite, but not the other way round. There is also evidence 

that landuse and carbon dioxide do not Granger cause one another and so is silver and carbon dioxide. 

Carbon dioxide Granger causes zinc, but not the other way. Similarly, forest Granger causes graphite 

and not the other way. There is no granger causality between land use and forest. Silver Granger causes 
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forest, but not the other way. However, there is bi-directional causality between zinc and gravity, while 

there is no causality between silver and landuse, but uni-directional causality between zinc and land 

use. Zinc granger causes silver, but not the other way round. Table 5 depicts that most causality is uni-

directional though there is bi-directional causality between zinc and graphite. 

There was also need to carry out further tests to ensure that the results of this research were 

not grounded on spurious regression. In that regard, I went further in carrying out statistical diagnostic 

tests which include normality tests, autocorrelation, multicollinearity and heteroscedasticity tests. The 

outputs and interpretation of these tests are shown below. 

 

 

The normality case 

Figure 1. Time series normality tests 

 

In the above output, the p-Value of 0.438514 is greater than 0.05, the assumption was that normality 

is present. This is also confirmed by the Jarque-Bera statistic, which is also closer to 2. 

 

Autocorrelation 

I also tested the data for autocorrelation using the following Null and Alternative Hypotheses:  

H0: ꝭ=0 (No autocorrelation) 

Ha: ꝭ#0 (autocorrelation present) 

 

Table 6. Breusch-Godfrey Serial Correlation LM Test:  

     
F-statistic 1.783806     Prob. F(2,25) 0.1887 

Obs*R-squared 4.121143     Prob. Chi-Square(2) 0.1274 

     
          
Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.145361 0.795895 0.182638 0.8566 

LOG(FOREST) -0.140882 0.920971 -0.152971 0.8796 

0

1

2

3

4

5

6

7

8

9

-0.15 -0.10 -0.05 0.00 0.05

Series: Residuals
Sample 1991 2023
Observations 33

Mean       3.54e-15
Median   0.002191
Maximum  0.068775
Minimum -0.127739
Std. Dev.   0.043202
Skewness  -0.681794
Kurtosis   3.628402

Jarque-Bera  3.099606
Probability  0.212290
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LOG(GRAPHITE) 0.008380 0.042657 0.196440 0.8459 

LOG(LANDUSE) 0.236113 0.847757 0.278515 0.7829 

LOG(SILVER) -0.018945 0.080199 -0.236223 0.8152 

DLOG(ZINC) 0.003944 0.023300 0.169253 0.8670 

RESID(-1) 0.321692 0.201252 1.598454 0.1225 

RESID(-2) 0.088702 0.227091 0.390602 0.6994 

     
     R-squared 0.124883     Mean dependent var 3.54E-15 

Adjusted R-squared -0.120150     S.D. dependent var 0.043202 

S.E. of regression 0.045724     Akaike info criterion -3.125164 

Sum squared resid 0.052267     Schwarz criterion -2.762374 

Log likelihood 59.56520     Hannan-Quinn criter. -3.003096 

F-statistic 0.509659     Durbin-Watson stat 1.948360 

Prob(F-statistic) 0.818479    

     
      

In the output above, I fail to reject the Null Hypothesis of no autocorrelation considering that all the P-

values in this output are greater than 0.05. This demonstrates that spurious regression results have 

been avoided.  

 

Multicollinearity 

One other important test that was carried out to ensure that the results are not biased were 

multicollinearity tests. The hypotheses that guided this analysis was based on the Null and Alternative 

hypothesis: Ho: ʌ=0 (no multicollinearity); Ha: ʌ#0(multicollinearity present). Considering that I 

applied the Variance Inflation Factor (VIF) to test the presence or absence of multicollinearity in these 

data series, I was guided by the following hypothesis: H0: VIF≤5 (No multicollinearity) Ha: ≥5 

(multicollinearity present). The output for this test is provided in table 7 below: 

 

Table 7. Variance Inflation Factors  

 Coefficient Uncentered Centered 

Variable Variance VIF VIF 

    
    C  0.656450  9792.973  NA 

LOG(FOREST)  0.866533  17083.47  3.436887 

LOG(GRAPHITE)  0.001811  5097.916  2.480871 

LOG(LANDUSE)  0.675802  9887.021  1.335591 

LOG(SILVER)  0.006493  9581.664  4.622045 

DLOG(ZINC)  0.000486  1.220946  1.199746 

    
 

The above output also shows that all the variables are stable. The Null Hypothesis of no multicollinearity 

is failed to be rejected. This state of affairs demonstrated that the data was stable and so produced 

unbiased results considering that all the centred Variance Inflation Factors are less than 5. 
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Heteroscedasticity 

The test was guided by these hypotheses: 

H0: Ꝺʌ2=constant (homoscedasticity)1 

Ha: Ꝺʌ2#constant(heteroscedasticity)2 

 

Table 8. Heteroskedasticity Test: Breusch-Pagan-Godfrey 

     
F-statistic 0.790075     Prob. F (5,27) 0.5661 

Obs*R-squared 4.211979     Prob. Chi-Square (5) 0.5193 

Scaled explained SS 3.705507     Prob. Chi-Square (5) 0.5925 

     
          
Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.013131 0.052194 -0.251576 0.8033 

LOG(FOREST) -0.005960 0.059967 -0.099393 0.9216 

LOG(GRAPHITE) -0.002124 0.002741 -0.774972 0.4451 

LOG(LANDUSE) -0.057642 0.052958 -1.088449 0.2860 

LOG(SILVER) -0.001992 0.005191 -0.383649 0.7042 

DLOG(ZINC) 0.000187 0.001420 0.131840 0.8961 

     
     R-squared 0.127636     Mean dependent var 0.001810 

Adjusted R-squared -0.033913     S.D. dependent var 0.002980 

S.E. of regression 0.003030     Akaike info criterion -8.597642 

Sum squared resid 0.000248     Schwarz criterion -8.325550 

Log likelihood 147.8611     Hannan-Quinn criter. -8.506091 

F-statistic 0.790075     Durbin-Watson stat 2.029618 

Prob(F-statistic) 0.566075    

     
     
 

The above output also showed that the Null Hypothesis should be failed to be rejected considering that 

all the p-values are greater than 0.05. This shows that the data was stable thus being able to give us 

reliable results. 

 

Table 9. Ramsey RESET Test 

Ramsey RESET Test   

Equation: EQ01   

Specification: LOG(CO2) C LOG(FOREST) LOG(SILVER) LOG(GRAPHITE) 

        LOG(LANDUSE) DLOG(ZINC)  

Omitted Variables: Squares of fitted values  

     
      Value Df Probability  

t-statistic  1.290606  26  0.2082  

 
1 The residuals’ variance is constant across all levels of the independent variables 
2 The variance of the residuals are not constant across all the levels of the independent variables  
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F-statistic  1.665663 (1, 26)  0.2082  

Likelihood ratio  2.049151  1  0.1523  

     
     F-test summary:   

 Sum of Sq. Df 

Mean 

Squares  

Test SSR  0.003596  1  0.003596  

Restricted SSR  0.059726  27  0.002212  

Unrestricted SSR  0.056130  26  0.002159  

Unrestricted SSR  0.056130  26  0.002159  

     
     LR test summary:   

 Value Df   

Restricted LogL  57.36414  27   

Unrestricted LogL  58.38872  26   

     
          

Unrestricted Test Equation:   

Dependent Variable: LOG(CO2)   

Method: Least Squares   

Date: 01/08/25   Time: 15:53   

Sample: 1991 2023   

Included observations: 33   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -41.80416 43.48731 -0.961296 0.3453 

LOG(FOREST) -5.824074 4.815848 -1.209356 0.2374 

LOG(SILVER) -15.61559 12.60899 -1.238448 0.2266 

LOG(GRAPHITE) -2.892842 2.335990 -1.238379 0.2266 

LOG(LANDUSE) 45.88210 37.06274 1.237958 0.2268 

DLOG(ZINC) 0.233428 0.189513 1.231721 0.2291 

FITTED^2 0.515115 0.399127 1.290605 0.2082 

     
     R-squared 0.948915     Mean dependent var 24.11925 

Adjusted R-squared 0.937127     S.D. dependent var 0.185301 

S.E. of regression 0.046464     Akaike info criterion -3.114468 

Sum squared resid 0.056130     Schwarz criterion -2.797027 

Log likelihood 58.38872     Hannan-Quinn criter. -3.007658 

F-statistic 80.49311     Durbin-Watson stat 1.395387 

Prob(F-statistic) 0.000000    

     
Considering that the p-values are greater than the significance level of 0.05%, I fail to reject the Null 

Hypothesis that the model is accurately specified and that the residuals follow a random distribution.  
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The final regression model 

After engaging a series of the above coefficient, residual and stability diagnostic tests, I then computed 

the final regression and the output is given below: 

 

Table 10. The impact of Climate smart technologies on carbon dioxide emissions 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 14.31129 0.810216 17.66355 0.0000 

LOG(FOREST) 0.276916 0.930877 0.297479 0.7684 

LOG(GRAPHITE) 0.121512 0.042551 2.855656 0.0082 

LOG(LANDUSE) -1.939786 0.822072 -2.359631 0.0258 

LOG(SILVER) 0.657323 0.080580 8.157370 0.0000 

DLOG(ZINC) -0.009540 0.022041 -0.432805 0.6686 

     
     R-squared 0.945643     Mean dependent var 24.11925 

Adjusted R-squared 0.935576     S.D. dependent var 0.185301 

S.E. of regression 0.047033     Akaike info criterion -3.112978 

Sum squared resid 0.059726     Schwarz criterion -2.840886 

Log likelihood 57.36414     Hannan-Quinn criter. -3.021427 

F-statistic 93.94253     Durbin-Watson stat 1.303366 

Prob(F-statistic) 0.000000    

     
      

Table 10 above is an output of a study that was carried out to test if the current climate smart 

technologies on a global scale are making significant strides towards a low global carbon economy. The 

constant (c)’s coefficient 14.31129 is statistically significant and this suggests that when forest, graphite, 

landuse, silver and zinc increase by 1%, carbon dioxide emissions will be reduced by 14%. 

The coefficient of the forest variable is 0.276916 and the probability value is 0.7684. The 

coefficient shows that a 1% increase in forest area of the global land results in 0.27% reduction in 

carbon dioxide emissions. However, in this model, the p-value is greater than 0.05. This is because of 

a lot of current deforestation that is taking place in the different parts of the world particularly in the 

emerging economies. On the other hand, the graphite coefficient is 0.121512 and the p-value is 0.0082. 

This variable is statistically significant demonstrating that graphite technologies have a significant impact 

on carbon dioxide emissions. This means that a 1% increase in graphite technologies will result in 0.12% 

reduction in carbon dioxide emissions. 

The land use coefficient is -1.939786 and the p-value is 0.0258 is approaching a level of 

significance; suggesting that landuse technologies have a positive influence on carbon dioxide emission 

reduction, though currently its impact is mild (not strong). Silver has a coefficient of 0.657323 and the 

p-value is 0.0000. The variable is statistically significant showing that silver technologies have a 

significant impact on carbon dioxide emissions. A 1% increase in silver technologies significantly yields 

a 0.68% reduction in carbon dioxide emissions. Additionally, zinc has a coefficient of -0.009540 and the 

probability value is 0.6686 and is greater than 0.05. This shows that zinc technologies are not yet 
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significant in reducing carbon dioxide emissions; but a continuous harnessing of this technology will 

finally result in a low carbon economy in the future.  

In terms of model fit, the R-Squared value of 0.945643 indicates that a 1% increase in forest, 

graphite, landuse, silver and zinc technologies yield 95% of carbon dioxide emission reduction. The F-

statistic 93.94253 and a p-value of 0.000000 demonstrates that the overall model is statistically 

significant, demonstrating that at least one of the regressors in the model is significantly related to 

atmospheric carbon dioxide reduction. In this case, the model is robust and demonstrate that the global 

nations’ efforts aimed at reducing the emissions of carbon dioxide in the atmosphere are moving in the 

right direction; meaning that the deadline of the 2050 net-zero emission might be achieved if progress 

is maintained or even enhanced. 

 

Discussion  

The findings in this study have demonstrated that an increase in metal technologies is associated with 

a subsequent decline in atmospheric carbon dioxide emissions. These findings are in line with previous 

findings; for example, Lin (2019) and Hollapa (2020) found that oil producing companies in the United 

States of America and in other oil producing companies have used Carbon Dioxide Capture and Storage 

technologies to get rid of atmospheric carbon dioxide concentration by using cryogenic 

distillation/membrane, physical absorption and chemical absorption-based separation technologies. 

LanzaTech, an Illinois United States-based company has also developed microbial bioreactor systems 

with the ability of direct gas fermentation to generate ethanol from carbon-holding gases like integrated 

iron and steel plant off gases (Hollapa, 2020). Another demonstration plant has also been set up in 

Shouqang in China while another one was similarly constructed in Belgium at Arcelor Mittal Ghent 

(Hollapa, 2020). These CCS technologies were said to have been able to reduce atmospheric carbon 

dioxide concentration by 9% (Hollapa, 2020, p.9).  

Similarly, the Japanese COURSE50 programme, the European ULCOs programme, the 

Australian Carbon dioxide Breakthrough programme and the North American AISI Carbon dioxide 

Breakthrough programmes impactfully reduced greenhouse gas emissions (Hollapa, 2020). With these 

technologies, “the reductions in carbon dioxide emissions were estimated to be in the range of 10% to 

25% (Hollapa, 2020, p. 7). Even the harnessing of renewable technologies such as wind, solar, nuclear 

and hydro-power have been found to be important in carbon dioxide emission reductions. With an 

increase in the use of climate smart technologies, global economic giants like China, which is the greatest 

producer of global steel, have been able to reduce carbon dioxide emissions to 620g co2/kwh. Similarly, 

the United States of America was able to reduce carbon dioxide emissions by 420gco2/kwh, while the 

European Union was able to reduce its carbon emissions by 282gco2/kwh (Hollapa, 2020). With these 

technologies, global emissions of carbon dioxide are at 10% for the past three decades (Hollapa, 2020, 

p. 11). Even in Nepal, Renewable Energy Technologies (RETs) have also been implemented. 

Technologies such as the National Energy Crisis Mitigation and Energy Development Decade have been 

in operation since 2016, whilst the Nationally Determined Contributions have been effected in the past 

5 years (Suman, 2021). With these climate smart technologies, a total of 86 803 tco2e were reduced 

(Suman, 2021, p. 10). 
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Even in African countries, projects and programmes that have been implemented to drastically 

reduce the carbon dioxide emissions have been noticed. The implementation of the 300MW Bui Hydro 

project in western Ghana above the Volta Dam has significantly contributed to the reduction of 

greenhouse gas emissions (Ahinsah-Wobil, 2024). The results for this study are similarly consistent with 

the observations that the emissions of GHGs have been reduced when world governments came 

together to form international agreements to deal with greenhouse gas emissions since 1980 (Ritchie 

et al., 2023). 

 

CONCLUSION  

The study has shown that climate smart technologies are part and parcel of the low-carbon technological 

climate change package, which have entered the arena for climate policy discussions since the 1980s. 

Past efforts at tackling climate change have been around since 1980 and the need to create a low carbon 

economy has been at the forefront of climate change global discussions. Against this background, the 

paper provided an econometric analysis of the impact of climate smart technologies on global carbon 

dioxide emissions. It quantitatively traced the progress that has been made globally in reducing carbon 

dioxide emissions considering that the 2050 net-zero emissions deadline is only two and a half decades 

away. The paper considered carbon dioxide due to the observation that it is the most significant 

greenhouse gas whose emissions currently stand at 37 gigatons per annum. The study has made use 

of graphite, zinc, silver global production annual trends, global land use changes and the changing 

trends of global forest area cover of global data running from 1990 to 2023 and found that a 1% increase 

in forest, graphite, landuse, silver and zinc technologies yield 95% of carbon dioxide emission reduction. 

A positive association between carbon dioxide emissions and climate smart technologies have been 

found. The study therefore recommends nation-states to increase and gear-up their climate smart 

efforts to achieve net-zero GHGs emissions by 2050. 
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